sexta-feira, 19 de março de 2010

Relevância das "Frequências Naturais"

A natureza, cada vez mais, tratuzida atravéz dos tempos por seus ciêntistas e pensadores. Trata-se na prática, de um enorme somatório de fatores físico-químicos que formam uma dispertante e incrível escala de fenômenos naturais. Se observada do ângulo certo pode nos incitar a uma interpretação de um sistema, segundo uma estrutura de conceitos mentais ou experimentais.


Onda de choque

Imagens do teste da bomba atômica americana. É possível notar a onda de choque se expandindo a frente da bola de fogo produzida pela detonação.

Onda de choque é uma onda caracterizada por ser um distúrbio em propagação onde propriedades como velocidade, pressão, temperatura ou densidade variam de maneira abrupta e quase descontínua. Esta onda pode ocorrer tanto em meios físicos, propagando-se de maneira mecânica, quanto em campos como o campo elétrico e o campo magnético.

Ondas sonoras podem ser entendidas como flutuações de pressão. Por tanto, não se propagam no vácuo.Uma onda de choque se forma nos gases sempre que a velocidade do gás é maior que a velocidade do som nele. Quando um avião atinge exatamente a velocidade do som, as ondas sonoras que ele está emitindo passam a se condensar a sua frente por estarem se propagando na mesma velocidade. As ondas sonoras propagam-se em meios sólidos, líquidos e gasosos, com velocidades que dependem das diferentes características dos materiais. De um modo geral, as velocidades maiores ocorrem nos sólidos e as menores, nos gases. A 20°C, o som propaga-se no ferro sólido a 5100 m/s, na água líquida a 1450 m/s e no ar a 343 m/s.

Isto provoca um aumento da pressão nesta região gerando uma onda de choque que também recebe o nome de estrondo sônico ( Sonic Boom) notado em aviões que quebram a barreira do som. Para estes aviões, formas especiais de fuselagem se tornam necessárias para superar os efeitos de encontrar esta onda de choque. Efeito semelhante pode ser observado em trens de alta velocidade quando entram em túneis.

Outra onda de choque muito comum é o trovão. Quando uma descarga elétrica de grande intensidade corta a atmosfera na forma de um raio, provoca um aquecimento muito intenso que leva a uma expansão rápida do ar ao redor do raio. Como a velocidade da expansão excede a velocidade do som, ouvimos o estrondo sônico na forma de um trovão.

Uma onda de choque envolvendo partículas é a causa do Efeito Tcherenkov. Quando uma partícula acima da velocidade da luz atravessa um meio isolante, libera energia em forma de radiação eletromagnética que pode estar dentro do espectro visível o que possibilita observar um rastro brilhante marcando sua passagem.

Efeito Tcherenkov
Radiação de Tcherenkov em um reator de pesquisas TRIGA.

Embora, de acordo com a teoria da relatividade restrita, a velocidade da luz no vácuo não possa ser ultrapassada, a velocidade da luz em um meio material pode ser bem menor que aquela do vácuo. Assim em um meio material é possível uma partícula eletricamente carregada (como um elétron ou um próton) se deslocar com velocidade superior à da luz naquele meio (V > c/n).



Singularidade de Prandtl-Glauert
F/A-18 e a nuvem devida à singularidade de Prandtl-Glauert



Ocorre uma onda de choque semelhante, quando um avião supersônico quebra a barreira do som. Esta onda de choque óptica leva a emissão de radiação eletromagnética. São isolantes os meios nos quais esta radiação pode aparecer. Este tipo de efeito é usado para a detecção de partículas com altas energias.
















Esquema do fenômeno.


Singularidade de Prandtl-Glauert é um fenômeno que ocorre, sob determinadas condições atmosféricas, no instante em que há uma queda súbita da pressão do ar, e que pode ser observado na forma de uma nuvem de condensação cônica, quando um avião voa próximo da velocidade do som, conquanto ainda haja controvérsia sobre a causa do fenômeno. Trata-se de um exemplo de singularidade matemática na aerodinâmica.
Se a umidade do ar é suficiente, pode produzir-se a condensação mesmo quando o objeto se move a uma velocidade inferior à do som, conforme se pode observar no vídeo da exibição de um F-18 em Salinas, Califórnia, voando próximo da água, onde as condições de umidade são maiores.


Velocidade supersônica








Avião ultrapassando a velocidade do som. O cone braco é formado por gotículas de água condensada, devido à súbita queda de pressão em regiões ao redor da aeronave.


Avião ultrapassando a velocidade do som


Veículo Protótipo ultrapassando a velocidade do som



A velocidade supersônica se refere a qualquer velocidade acima da velocidade do som, que é aproximadamente 343 m/s (ou 761 mph, ou 1255 km/h ao nível das águas do mar). Muitos caças são supersónicos. O Concorde foi um avião civil supersónico, de transporte de passageiros. Velocidades acima das 5 vezes a velocidade do som são muitas vezes referidas como hipersónicas.


Voo de talude

Um planador com hélice cimitarra fazendo voo de talude em Lock Haven, Pensilvânia, Estados Unidos da América.
Voo de talude ou voo de colina é uma técnica de voo que tem como objectivo manter a altitude num planador, ao aproveitar o ar ascendente produzido pelo vento ao encontrar um obsctáculo vertical (talude ou colina). Algumas aves, especialmente aves marinhas e aves de rapina também fazem uso deste tipo de voo.
Mesmo em um voo de talude, considerado de baixa velocidade, é possível se enfrentar questões
sobre ressonância, ou frequência natural, em sua engenharia.

Nos últimos 10 anos ocorreram no Brasil, cerca de 4 acidentes mortais com planadores em 2 dos quais, o fenômeno de "flutter", esteve presente, e ao que tudo indica, o desconhecimento deste fenômeno, parece ter contribuído substancialmente.

O "flutter" (ressonância aeroelástica), é um comportamento natural de um sistema em geral e como exemplo temos os casos de "Shimmy" de rodas de automóveis e os circuitos de rádio e televisão. Sintonizar um aparelho é alterar os seus elementos de modo a fazê-lo "ressoar" numa certa freqüência. Assim o "flutter" em aviões ou planadores, nada mais é do que mais um caso particular deste fenômeno vibratório geral

Ressonância Aeroelástica - Efeito Flutter


A freqüência natural de cada objeto é determinada por sua massa e rigidez. Aumentar a massa (ou peso) de um objeto reduz ou abaixa a sua freqüência natural. Aumentar a rigidez do objeto, como por exemplo aumentar a tração de uma corda do violão, aumenta ou sobe sua freqüência natural.

O fato de que cada objeto tem pelo menos uma freqüência natural não implica em um problema. Mas, um problema de vibração excessiva pode acontecer como resultado da coincidência de uma freqüência natural da máquina com uma freqüência inerente de funcionamento dela. Quando isso acontece, o problema é denominado de “Ressonância”.

Do ponto de vista da vibração, a ressonância atua como um amplificador mecânico. Mesmo forças pequenas ou normais tais como o desbalanceamento residual, ou o desalinhamento, as forças hidráulicas ou aerodinâmicas, ou ainda as forças magnéticas em motores, que normalmente resultam em pequenas ou insignificantes vibrações, podem vir a ter amplitudes de vibração extremamente altas se uma delas excitar uma condição de ressonância.

Ressonância é uma causa muito comum de vibração excessiva em máquinas porque:
1. Máquinas são uma reunião de diversos elementos diferentes como tubulações, mancais e seus pedestais, bases, itens acessórios como bombas de lubrificação e etc. É claro que cada um desses componentes tem a sua própria freqüência natural.
2. A rigidez de cada componente de uma máquina é diferente em direções diferentes. Como resultado, cada componente da máquina terá várias freqüências naturais. Por exemplo, considere o mancal de um ventilador, a rigidez desse mancal é diferente nas direções horizontal, vertical e axial. Consequentemente, as freqüências naturais desse item em particular também serão diferentes para cada uma das direções.

Portanto, é fácil de entender porque a ressonância é um fenômeno muito comum em máquinas, basta observarmos a quantidade de componentes que uma máquina tem, cada um deles com múltiplas freqüências naturais, basta somente uma freqüência de excitação gerada pelo equipamento coincidir com uma dessas freqüências naturais para a ressonância acontecer e os níveis de vibração resultantes serem bastante elevados. Apesar de várias máquinas recém instaladas e postas em serviço poderem não exibir esses problemas no futuro é possível acontecer a ressonância devido à mudança de rigidez que ocorreu graças ao desgaste interno, a perda de parafusos, a acomodação estrutural, a deterioração da base, etc.




Referências
• Dallas Murphy, “Rounding the Horn” (New York: Phoenix Books, 2004), p. 221.
• McKnight, TL & Hess, Darrel (20
00). Katabatic Winds. In , Physical Geography: A Landscape Appreciation, pp. 131-2. Upper Saddle River, NJ: Prentice Hall. ISBN 0-13-020263-0
• Rios, J. L. P. – Modelos Matemáticos em
Hidráulica e no Meio Ambiente no Simpósio Luso-Brasileiro sobre Simulação e Modelação em Hidrâulica. APRH – LNEC. Lisboa, 1986.
• Site: http: www.mhfpreditiva.com.br ; Data: 10/03/10
HALLIDAY, David, RESNICK, Robert & KRANE, Kenneth S. Fisica 2. 4a edicao. Rio de Janeiro: LTC Editora, 1996.
TIPLER, Paul Allen. Fisica para Cientistas e Engenheiros, vol. 2. 3ª edicao. Rio de Janeiro: LTC Editora, 1995.


Nenhum comentário:

Postar um comentário